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ABSTRACT: This paper presents a new geometrical method to solve the inverse kinematics (IK)
problem, for characters with highly articulated limbs (HAL). Our method relies on a new triangle
theorem, which is the main contribution of this work. This theorem, allows to compute the intersection
between two circles, without any sine or cosine computation, and in less time than the classic algebraic
aproach. We also present the mathematical proof for this theorem, which is valid for any triangle.
Applying this new method, we are able to produce complex shapes as spirals or springs, with stable
and smooth animations, in redundant kinematic chains (KC).
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1. INTRODUCTION
Despite massive amount of computer animation
tools, some types of characters still remain very
difficult to animate. HAL like an elephant trunk
[14] or an octopus arm are very difficult to ani-
mate using traditional IK solvers.

Figure 1: A Bézier curve rig for an elephant trunk

To animate this kind of limbs, the most com-
mon solution is to use an IK solver based on
Bézier curves [2]. The curve has vertices and
handles which are moved by the animator, and
each link adopts a tangent direction to the curve
as seen in Figure (1).

The purpose of this work was to find a new
solution for this problem, and our main goal was
to produce a tool to easily animate a spiral shape
like Figure (2) while keeping curves ratios [11]
and smooth movements.

Figure 2: A spiral made by Bézier curves

2. INVERSE KINEMATICS
The IK research in robotics, have its own con-
cerns as inertia, forces, or angular and linear ve-
locities [1, 7, 8]. But this physical concerns can
be ignored in animation and computer graphics
[10].

So if we work in a virtual world, we only need
to calculate the position for each link in the KC.
So it is possible to determine our IK problem as
equivalent to a Circle-Circle Intersection Prob-
lem (CCI) [9, 15, 16] for each pair of links, as
seen in Figure (3), where the origin denoted as
O1 is the center of the first circle, the end effector



denoted as O2 is the center of the second circle,
the distance between the circles denoted as d, the
radii of the circles denoted as l1 and l2 represent-
ing two links, and P1 and P2 as the two possible
solutions for the intersection.

Figure 3: Inverse kinematics as circle-circle in-
tersection

2.1 Singularities
In every KC there are some configurations where
the IK problem has no solution, for example:
the goal could be unreachable for the end effec-
tor, this types of no-solution configurations are
known as a singularities.

Given two circles in a two dimension frame of
reference, they could have several relative posi-
tions and relations of their radii. We defined five
possible combinations, as the singularities of our
system.

Exterior Singularities
When d ≥ r1 + r2 ee have two possible singulari-
ties:

(1) Exterior circles
When d = O1O2 > r1 + r2, and there are no
intersections between the circles.

(2) Tangent exterior circles
When d = O1O2 = r1+ r2, and there is only
one intersection point between the circles.

In this two cases, the KC must adopt a fully
extended posture where the orientation of each

link is the vector O1O2, so no IK compute is
needed.

Interior Singularities
When d ≤ |r1− r2| we can have three different
singularities:

(3) Interior circles
When d = O1O2 < |r1− r2|, and there are
no intersections between the circles.

(4) Tangent interior circles
When d = O1O2 = |r1− r2|, and there is
only one intersection between the circles.

(5) Overlapping equal circles
When O1 = O2 and r1 = r2 and there are
infinite intersections between the circles.

An IK solution is needed for tangent exterior,
or tangent interior circles, in this cases, we de-
termine a safe distance that must be larger than
|r1− r2|, in which the IK solution will be cal-
culated, this distance is a vector with the same
direction than O1O2.

3. PROPOSED METHOD
The first step of our method is to find the coor-
dinates of the perpendicular projection from OJ
towards OP, denoted as j as seen in Figure (4),
using our new theorem that requires a geometri-
cal construction which is explained as follows:

We draw a circle with a radius equal to l1 and
the center of which is at O, the intersection be-
tween this circle and OP towards P is denoted
by S1. Then we draw another circle with a ra-
dius equal to l2 with P as origin, the intersection
between this new circle and PO towards O is
denoted by S2.

Now, we determine m as the middle point be-
tween S1 and S2.

3.1 The new theorem
Let4OPJ be a triangle like the one in Figure (4),
where A = |OP|, B = |Om| and C = |S2S1|, the
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Figure 4: New method construction

distance from S2 to j (denoted by D) is equal to
B∗C

A , that is:

A
B
=

C
D
. (1)

The theorem is valid for any configuration of
triangles as shown in Figure (5).

Figure 5: Possible configurations

3.2 Proof
WLOG, we can place the triangle4OPJ on a dif-
ferent direction, matching OP with the X positive
axis, and O matching the origin of the coordi-
nate system XY . Furthermore, we will use the
same notation of the Figure (6) and we will call θ

the angle formed by OP and OJ. If A≥ l2, then
S2 is on the positive side of X axis; however, if
A < l2, then S2 is on the negative side of X axis
(Figure 6). To simplify the notation, when we
wrote ± will mean that the sign + is for the case
of A≥ l2 and the sign − for the case of A < l2; in
the same way, when we wrote ∓ will mean that
the sign − is for the case of A < l2, and the sign
+ is for the case of A≥ l2.

A = |OP| (2)

Figure 6: Theorem proof

{
OS1 = l1
OS2 =±(A− l2)

(3)

B = Om =
1
2
[OS1 +OS2] =

1
2
[l1 +A− l2] (4)

C = S2S1 = OS1−OS2 = l1− (A− l2) (5)

D = S2 j = l1cosθ −OS2 = l1cosθ + l2−A (6)

Therefore:

BC =
1
2
[l1 +A− l2][l1− (A− l2)] (7)

BC =
1
2
[l2

1− (A− l2)2] (8)

BC =
1
2
[l2

1−A2 +2Al2− l2
2 ] (9)

AD = A[l1cosθ + l2−A] (10)

AD = Al1cosθ +Al2−A2 (11)

On the other hand, by the law of cosines:

l2
1 +A2−2Al1cosθ = l2

2 (12)

From which we can infer:

l2
1 +A2− l2

2 = 2Al1cosθ (13)
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l2
1−A2 +2Al2− l2

2 = 2Al1cosθ +2Al2−2A2

(14)

1
2
[l2

1−A2 +2Al2− l2
2 ] = Al1cosθ +Al2−A2

(15)
Now, by Equation (9) and Equation (11), it

follows that BC = AD, which is equivalent to
Equation (1). Q.E.D.

Obtaining J
Thus, from this theorem AD = BC, and because
D =
−→
j −−→S2,A = |OP|,B = |Om| and C =

−→
S1−−→

S2, then we can have an expression for the vector−→
j as:

−→
j =
|Om|
|OP|

(
−→
S1−

−→
S2)+

−→
S2. (16)

−→
O j is the projection of

−→
OJ over OP, so the grey

triangle4O jJ in Figure (7) is a right-angled tri-
angle of which we know the hypotenuse denoted
by l1 and, from Equation (16), the opposite leg to
the angle θ denoted by |O j|.

Figure 7: Solving J

With this data, we compute the magnitude of
the adjacent leg to the angle θ by the Pythagorean
theorem as follows.

|−→n |=
√

(l2)2−|O j|2 (17)

The last step to find J is to calculate the vector
−→n which must be perpendicular to OP with mag-
nitude given by Equation (17) (Figure 7). This

orthogonal vector −→n is obtained with two cross
products by the following formula:

−→n =
(−→

OP×−→v
)
×−→OP (18)

where −→v is a vector not parallel to OP given
by the user and which defines the solving plane.
Finally we project the adjacent leg to the angle
θ in the direction of −→n , where we can choose
whether to use a positive or negative direction to
obtain J at the top or bottom, thus:

−→n =

√
l22−|−→P −−→j |

2
( −→u
|−→u |

)
(19)

And finally, from Equations (16) and (19):−→
J =
−→
j +−→n . This method can be implemented

in any computer system capable of performing
basic vector operations.

4. SOLUTION FOR HAL
In the case of HAL [20] where there are more
than two links on the KC, the solution inspired
by that of Jamali [3], is to create n− 2 virtual
links denoted as V1, V2, ..., Vn−2 given n links l1,
l2, ..., ln, (Figure 8). We use this virtual links to
compute the IK problem for the last link denoted
as ln and the first virtual link denoted by V1. The
solution using Equations (16) and (19), and de-
noted as J1 will be the end effector for the next
IK computation for V2 and ln−1. This process is
repeated until we have the last two links denoted
by l1, l2 to obtain the solution Jn−1.

Figure 8: Solution for n links.
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In order to use this virtual links denoted by
Vk, we need to compute them as prismatic ones
with automatic variable length, with the follow-
ing process: For each link, we define a minimum
length denoted by Vkmin and a maximum length
denoted by Vkmax , where the minimum length will
be cero and the maximum will be compute with
the following equation:

Vkmax =
nk

∑
i=1

li (20)

Then, we will need to define a minimum dis-
tance from the origin O to the end effector P as
OPmin with any distance > 0. And a maximum
distance from the origin O to the end effector P
as OPmax given by:

OPmax =V kmax (21)

Thus, we can define the length for each virtual
link Vk with the following formula:

|Vk|=(
(Vkmax−Vkmin)∗

((|OP|−OPnmin
)
∗100

OPnmax−OPnmin

))
+Vkmin

(22)

5. THE SPIRAL SHAPE
In order to obtain an spiral shape like Figure (2),
we gradually decrease the length of the virtual
vectors by a given factor denoted by δ :

|Vk| ← |Vk|−δ (23)

Where |Vk|> 0. This operation, increases the
angle of each pair of links, until obtaining the
spiral shape as seen in Figure (9).

6. RESULTS
To demonstrate the benefits of the new method,
the spiral shaped example was implemented with
50 links. The platform used was Autodesk 3ds-
Max, using maxscript. This computational anal-
isys was intended to test the transformational in-

Figure 9: Obtaining the spiral shape

variance, understood as the stability of the solu-
tion under the origin and the end effector trans-
formations.

6.1 Native IK solvers.
In Figures (10, 11) we show examples of IK using
the native IK solvers from 3dsMax, the IK is
resolved, but the way the links are positioned, is
far from the aesthetics would be expected for an
animation production.

Figure 10: IK solved with History Dependent IK
Solver from 3dsMax

Figure 11: IK solved with History Independent
IK Solver from 3dsMax

6.2 The new method result.
According to results, we can infer that the new
method is an stable approach to solve the IK prob-
lem for HAL, and does not have any sign changes
so the IK solution is the same regardless any ori-
gin or end effector transformation. Also, the new
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method presents a continuous and smooth result
(Figure 12).

Figure 12: Result with the new method

Also, the method provides an unique solution
for each state which is consistent with previous
and subsequent states, giving an smooth move-
ment on animation, although the solution for each
state is computed independently of the others.

6.3 Results on three dimensions
Using three dimensions coordinates, the new IK
solution remains stable during transformations
at any quadrant, and the shape and movements
are smooth. It is even possible to make a spring
shape as seen in Figure (13).

Figure 13: Resulting spring by modifying the~n
vector orientation.

7. CONCLUSIONS
The IK solvers are useful and important tools in
animation, it is almost impossible to find a char-
acter rig without some sort of IK solver [18], and
as the animation industry grows, more complex
characters are designed bringing new problems
for computer science.

Among the available IK solvers, the spline IK
solver is currently the one who gives the best con-
trol over curves, while solving the IK problem,

but with great effort from the animator that needs
to move the vertices and handles of cubic Bézier
curves [11].

Many research has been done about IK so-
lutions for articulated and redundant KCs [3–
8, 10, 12, 13, 17, 19, 20], but none of them from
the sole animation perspective.

In this paper, we proposed a new method for
computing the IK problem for highly articulated
limbs. Our method solves an important problem
in computer animation, because it allows an ani-
mator to create smooth and stable animations of
complex curves like the ones of the spider con-
cept shown in Figure (14).

Figure 14: Resulting spring by modifying the~n
vector orientation.

8. CONTRIBUTIONS
The main novelty of this paper, is the new tri-
angles theorem which allows to obtain a circle-
circle intersection, with fast and reliable math.
The use of this theorem, ensures an stable result
under any 3D transformation.

In addition, this work provides an important
contribution to the entertainment industry by en-
abling the making of animations that are currently
difficult to obtain with the available animation
software .

8.1 Future work
The triangles theorem we proposed, can be used
for many other problems such as voronoi dia-
grams, the pulley problem, or any problem that
could need a circle-circle intersection solution.
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